Paper ID:	BMEiCON2024-006
Paper Title:	Finite Element Analysis of Forearm during A Fall
-	on an outstretched hand
Authors:	Nutwara Duangwon, Weerayot Aramphianlert (Dept. of Biomedical
	Engineering, Srinakharinwirot University);Chidchanok Sakdapanichkul
	(Dept. of Orthopaedics, Nopparat Rajathanee Hospital);Chamaiporn
	Sukjamsri (Dept. of Biomedical Engineering, Srinakharinwirot
	University)
Email:	natwara.duangwong@g.swu.ac.th
Abstract	

The forearm finite element model is valuable for biomechanical analysis of falls on an outstretched hand (FOOSH). Previous studies have developed various finite element models of the forearm with differing components. This study aimed to identify the most suitable model for analyzing biomechanical behavior. Three finite element models were constructed based on computed tomography (CT) images, each incorporating varying structural components. A load of 600 N was applied to the forearm, and the Von Mises stress in each model was compared to experimental data. The results indicated that the model incorporating bones, interosseous membranes, and ligaments was the most appropriate for simulating biomechanical behavior. These findings can enhance future biomechanical analyses related to forearm fractures